

VIBRATIONS OF AN ANNULAR ISOTROPIC PLATE WITH ONE EDGE CLAMPED OR SIMPLY SUPPORTED AND AN INTERMEDIATE CONCENTRIC CIRCULAR SUPPORT

D. A. VEGA, P. A. A. LAURA AND S. A. VERA

Departments of Physics and Engineering, Universidad Nacional del Sur and Institute of Applied Mechanics (CONICET) 8000–Bahía Blanca, Argentina

(Received 18 November 1999)

1. INTRODUCTION

The present study deals with the determination of the exact fundamental frequency coefficient of the systems shown in Figure 1. Apparently no exact solution, as of this date, has been found to the problems under consideration [1].

2. SOLUTION OF THE PROBLEM

In the case of the systems shown in Figure 1 the exact solution of the problem governed by the classical partial differential equation is given by [1]

$$W_1(r) = A_i J_0(kr) + B_i Y_0(kr) + C_i I_0(kr) + D_i K_0(kr) \quad (i = 1, 2),$$
(1)

where $W_1(r)$ is the amplitude of axisymmetric normal modes of vibration for $a \le r \le c$ and $W_2(r)$ is the amplitude corresponding to the plate subdomain $c \le r \le b$.

The compatibility and boundary conditions are, in the case of the structural systems depicted in Figures 1(a) and 1(b):

$$W_1(c) = W_2(c) = 0, \qquad \frac{\mathrm{d}W_1}{\mathrm{d}r}(c) = \frac{\mathrm{d}W_2}{\mathrm{d}r}(c) \qquad \frac{\mathrm{d}^2 W_1}{\mathrm{d}r^2}(c) = \frac{\mathrm{d}^2 W_2}{\mathrm{d}r^2}(c), \qquad (2-5)$$

$$\frac{\mathrm{d}^2 W_1}{\mathrm{d}r^2} + \frac{\mu}{r} \frac{\mathrm{d}W_1}{\mathrm{d}r} \bigg|_{r=a} = 0, \qquad \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{\mathrm{d}^2 W_1}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d}W_1}{\mathrm{d}r} \right) \bigg|_{r=a} = 0. \tag{6,7}$$

When the plate is clamped at r = b, one has

$$W_2(b) = 0, \qquad \frac{\mathrm{d}W_2}{\mathrm{d}r}(b) = 0,$$
 (8a, b)

and when it simply supported at r = b the conditions are

$$W_2(b) = 0, \qquad \frac{\mathrm{d}^2 W_2}{\mathrm{d}r^2} + \frac{\mu}{r} \frac{\mathrm{d}W}{\mathrm{d}r}\Big|_{r=b} = 0.$$
 (8c, d)

0022-460X/00/210171 + 04 \$35.00/0

© 2000 Academic Press

Figure 1. Vibrating structural systems considered in the present study: (a) Case I, (b) Case II, (c) Case III and (d) Case IV.

Substituting equations (1) into equations (2)-(8), one obtains a homogeneous system of equations in the A_i 's, B_i 's, C_i 's and D_i 's. The non-triviality condition yields, finally, an (8 × 8) determinantal equation in $kb = \sqrt[4]{(\rho h/D)} \sqrt{\omega} b$. Its lowest root is the square root of the fundamental frequency coefficient ($\Omega_1^{1/2}$). Accordingly $\Omega_1 = \sqrt{(\rho h/D)} \omega_i b^2$. The procedure is the same in the case of systems (c) and (d) shown in Figure 1 (one

The procedure is the same in the case of systems (c) and (d) shown in Figure 1 (one substitutes "a" by "b" in equations (6) and (7) and "b" by "a" in equations (8)).

3. NUMERICAL RESULTS

All calculations have been performed making the Poisson ratio (μ) equal to 0.3. They have been greatly facilitated by the use of MAPLE [2].

Tables 1-4 show values of Ω_1 for the mechanical arrangements depicted in Figures 1(a)-(d) respectively.

It is important to point out that the relative accuracy of the overall methodology has been tested considering some limiting cases by approaching the inner, circular support

LETTERS TO THE EDITOR

TABLE 1

c/b								
a/b	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$0.1 \\ 0.2$	28.4626	35·3607 34·7037	39·2159 42·6524	30·6585 35·9611	22·8710 25·5161	17·7683 19·1019	14·3376 15·0601	11·9251 12·3404
0.3 0.4			45.2080	50·4234 62·6115	34·2629 56·6659	23·5876 34·2945	17·5950 23·2462	13·8962 17·2600
0·5 0·6				02 0110	92·4077	62·0031 141·9110	35·6415 68·1769	23·9569 38·3823
0·7 0·8							200.1489	77·2059 255·9297

Fundamental frequency coefficients for an annular plate: with intermediate support, free inside and clamped outside (Case I)

Table 2

Fundamental frequency coefficients for an annular plate: with intermediate support, free inside and simply supported outside (Case II)

c/b								
a/b	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$\begin{array}{c} 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \end{array}$	18·2397	22·9411 22·0313	28·3512 28·5230 28·6648	27.6610 30.7249 36.6636 39.9777	21.6856 23.8921 31.0973 46.4116 60.2784	17:0925 18:2738 22:3167 31:8522 55:0557 99:2180	13.9442 14.6057 16.9641 22.2164 33.6329 62.9331 165.8104	11.7446 12.1398 13.6344 16.8657 23.2732 36.9690 73.3350 235.5189

TABLE 3

Fundamental frequency coefficients for an annular plate: with intermediate support, clamped inside and free outside (Case III)

c/b								
a/b	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$\begin{array}{c} 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \end{array}$	4.9065	5·8746 6·2382	7·2990 7·7815 8·3435	9·4915 10·1549 10·9269 11·8575	13.0840 14.0843 15.2241 16.5809 18.2783	19.1558 21.1231 23.1807 25.4717 28.2266 31.8210	25.1750 31.2105 37.8763 44.5023 51.1124 58.5482 68.4728	22:4073 29:3626 39:9373 56:7685 84:8294 129:9709 183:9394 240:0768

towards the free edge of the plate. Excellent agreement with the eigenvalues available in reference [1] has been obtained. When the concentric support approaches the clamped or hinged inner plate support, the agreement with the values of reference [1] is also very good but for this situation the lowest frequency coefficient of the structural system does not correspond to an axisymmetric mode.

LETTERS TO THE EDITOR

TABLE 4

c/b									
a/b	0.2	0.3	0.4	0.2	0.6	0.7	0.8	0.9	
0.1	4.8369	5.7196	7.0331	9.0617	12.3463	17.4989	20.8714	18.0514	
0.2		6.1242	7.5103	9.6477	13.1563	19.0770	24.7558	21.5640	
0.3			8.1591	10.4642	$14 \cdot 2844$	21.1277	30.7563	28.1055	
0.4				11.5430	15.7381	23.5217	37.9973	39.1970	
0.5					17.6903	26.4796	45.6086	58·7941	
0.6						30.5435	53.8599	95.1926	
0.7							64.8495	154.4880	
0.8								220.6059	

Fundamental frequency coefficients for an annular plate: with intermediate support, free outside and simply supported inside (Case IV)

ACKNOWLEDGMENTS

The present investigation has been sponsored by Secretaria General de Ciencia y Tecnologia of Universidad Nacional del Sur (Departments of Physics and Engineering) and CONICET Research and Development Program.

REFERENCES

- 1. A. W. LEISSA 1996 NASA SP160. Vibration of Plates.
- 2. B. W. CHAR, K. O. GEDDES, G. H. GONNET, B. L. LEONG, M. B. MONAGAN and S. M. WATT 1991 MAPLE V.5, Library Reference Manual.